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A note on the evaluation of long-run investment decisions
using the sharpe ratio
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Abstract This paper reexamines the use of the Sharpe ratio to measure the
performance of large and small company stocks along with corporate bonds over
different holding periods. It builds on previous research which cites the effects of
serial correlation and non-normality in the creation of estimation error in the
calculation of the Sharpe ratio. It finds that higher order moments such as skewness
and kurtosis are a further source of error that must be accounted for when making
inferences about asset performance.
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1 Introduction

The Sharpe ratio measures excess return per unit of risk where risk is measured by
the standard deviation of the excess returns (Sharpe 1994). The ratio itself is a simple
calculation but as pointed out by Lo (2002) the accuracy of the ratio is dependent on
the time series properties of the return series. Mean reversion, serial correlation, and
aggregation methodology all have an effect on the calculation. Bao and Ullah (2006)
examine the bias that results from autocorrelation in the return series, while Bao
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(2009) relaxes the normality assumption. The above cited works suggest that the
Sharpe ratio should be adjusted for the estimation error in order to make correct
inferences about asset return series.

To further highlight this point, the work of Best et al. (2007) (hereafter referred to
as BHY (2007)) is reexamined. It is shown that absence the presence of serial
correlation, other properties of the return series, such as higher order moments, are
an additional source of estimation error that must be accounted for before inferences
can be made with the Sharpe ratio.

2 Literature review

BHY (2007) discuss how the presence of serial correlated returns will result in
different Sharpe ratios than those implied by the multi-period independent return
based Sharpe ratio (see: Levy (1972)). This is due to the effect serial correlation has
on volatility over time. Mean reversion (negative serial correlation) reduces return
volatility. Mean aversion (positive serial correlation) increases volatility. Fama and
French (1988) found mean reversion in long horizon stock returns as did Poterba and
Summers (1988) and Lewellen (2001). Strong and Taylor (2001) and Siegel (2002)
found mean aversion in fixed-income securities.

BHY (2007) argue that their simulation results, using annual data from the
Ibbotson Associates yearbook, are consistent with mean reversion in equity returns
and mean aversion in fixed income returns.1 However, they fail to mention the
possibility of estimation bias due to autocorrelation which is discussed by Lo (2002)
and Bao and Ullah (2006). They also don’t examine the effect of their sampling
methodology on the correlation of the return series.

3 Methodology and results

Annual data for large and small company stocks, corporate bond, and treasury bills
from 1926 through 2006 (80 data points) are collected using the Ibbotson Associates
yearbook (Morningstar 2007).2 Sample return distributions for holding periods of
one to 25 years are generated.

Previous empirical evidence cited by BHY (2007) that finds serial correlation
typically uses overlapping monthly observations. For example, Fama and French
(1988) when estimating annual autocorrelations, have data whose adjacent
observations overlap by 11 months. This is done since autocorrelations are biased
downward in finite samples when the effective sample sizes in long-horizon
regressions are small. For instance, with a 75 year sample and 5-year returns, there
are 15 independent observations. With this small a sample the bias toward finding
mean reversion could be significant. To remedy this problem most researchers

1 Originally published by Ibbotson, the Stocks, Bonds, Bills, and Inflation® yearbooks are now available
from Morningstar. See the yearbook for a detailed description of the portfolios.
2 Results of this paper do not change if sample data is restricted to the 1926–2000, the sample time period
used by Best et al. (2007).
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estimate these autocorrelations using overlapping monthly observations to increase
the power of the tests. This procedure induces strong correlations among the
residuals and methods to adjust for the correlation are valid only in large samples.

BHY (2007) have 75 independent annual returns (1926–2000). Their methodol-
ogy preserves the auto-correlation of the annual return series rather than the n-period
historical non-overlapping serial correlation. For example, when simulating 5-year
holding period returns, they are sampling with replacement 5-years of consecutive
return data. While this preserves in each trial of the simulation, the 5-year annual
serial correlation, it does not preserve the inherent historical serial correlation of 5-
year holding period returns based on non-overlapping periods. This is not an issue if
you assume that the investor also has an n-period investment horizon. If one makes
this assumption it is the auto-correlation of the annual returns series that is of
interest. Since it the serial correlation of the annual data that is of interest, it needs to
be determined if the annual Ibbotson Associates data set has significant serial
correlation.

Table 1 shows the annual first order serial correlation in the data. This measures
the degree to which returns in one time period are directly correlated with returns in
the next time period.3 Large company stocks (LCS), Small company stocks (SCS)
and corporate bonds (CB) all exhibit very low levels of mean aversion (positive first
order serial correlation). Excluding T-bills, the regression R2s and t-statistics indicate
no significant serial correlation is found in the annual Ibbotson Associates data.

An additional issue is related to the need for simulations that attempt to preserve
the historical correlations in returns across time. To create this data, holding period
returns are based on consecutive years. For a given holding period, a year is
randomly selected from the total number of years minus (n-1) years.4 The
compounded n-year holding period return, for every portfolio, is computed using
each portfolio’s return from the randomly selected year and the returns for the next
n-1 consecutive years.5 This procedure is repeated creating sample holding-period
return distributions for each portfolio. When sampling with replacement and with a
large enough simulation all data points in each n-period return distribution will be
represented in the overall simulation in approximately the same proportion as in the

3 Higher order serial correlation results are similar.

Table 1 Annual returns first order serial correlation 1926–2006 (80 observations) Rt ¼ at þ B1Rt�1 þ "t

α B1 R2 α B1 R2

LCS 0.1199 0.0291 0.0008 CB 0.057 0.0777 0.006

(t=4.50) (t=0.26) (t=4.81) (t=0.69)

SCS 0.1657 0.0576 0.0033 T-Bills 0.0035 0.9124 0.8316

(t=3.96) (t=0.51) (t=1.54) (t=19.63)

Rt=is the annual return for period t. LCS=Large Company Stocks, SCS=Small Company Stocks, CB=
Corporate Bonds, and T-bills=Treasury Bills

4 The elimination of the last n-1 years is necessary to guarantee that the n-year holding-period return can
be computed.
5 Lin and Chou (2003) examining equity returns also use this procedure to preserve serial correlation.
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initial n-period historical overlapping distribution. When calculating mean returns
and standard deviations and hence Sharpe ratios, the order of returns does not matter.
Therefore the simulated n-period mean returns and standard deviations will
approximately equal the historical overlapping n-period historical distribution mean
return and standard deviation. Therefore there is no need for the simulation.

In Table 2 Panel A, the historical 5-year overlapping return distributions’ average
return and standard deviation for the different asset classes is shown. Comparing
these average returns and standard deviations with the simulated results in Panel B,
overall as the number of trials in the simulation increase, the means and standard
deviations approach that of the historical distributions. The results demonstrate that,
for the stocks and bonds, the simulation size (250) used in BHY (2007) is too small.

Our results indicate that the findings of BHY (2007) are not driven by serial
correlation since no significant annual serial correlation exists in the data. The serial
correlations are too small to significantly affect the n-period volatility and hence the
Sharpe ratio. What then is driving their findings that using the auto-correlated returns
procedure with the original Sharpe ratio are so much different from the results using
the multi-period Sharpe ratio which assumes returns are independently and
identically distributed (i.i.d.) across time?

BHY (2007), find that when using auto-correlated returns the Sharpe ratios for
large and small company stocks are larger than the Sharpe ratio for corporate bonds
for all holding periods. When using independent returns the Sharpe ratio for
corporate bonds is larger than the Sharpe ratios for large and small company stocks,
when the holding period is greater than 16 years. Therefore to examine what is
driving their results, in Table 3, the historical 20-year serial correlated overlapping
returns and the 20-year simulated independently and identically distributed returns
are shown.6,7

Hodges et al. (1997) compared the original Sharpe ratio with the multi-period
Sharpe ratio. Both simulation methods assumed that securities are i.i.d.. They find
that the behavior of the multi-period Sharpe ratios is close to that of the single-period
Sharpe ratios where bonds outperformed stocks in the long run, therefore for
simplicity the original Sharpe ratio is used instead of the multi-period Sharpe ratio of
Levy (1972).

What is driving their results is that sampling a sequence of returns reduces the
likelihood of getting data points from the tails of the historical return distributions in
consecutive years. Therefore, BHY’s (2007) serial correlated methodology results in
a distributional shift when compared to the i.i.d. simulated distribution (brings in the
tails of the distribution, higher order moments (skewness, kurtosis) are also
significantly changed). These distributional shifts affect the standard deviation and
hence the Sharpe ratio.

6 Only 30,000 trials are run in this simulation due to software constraints of Insight from AnalyCorp.
Although it can run up to 1,000,000 trials (gives you the mean and standard deviation), it will only let you
view a maximum of 30,000 trials. The individual trial data is required to calculate the higher order
moments.
7 With a large sample size, a simulated n-period serial correlated return distribution will be nearly identical
to the historical n-period overlapping distribution. Therefore it is appropriate to use the historical
distribution in place of the simulated.
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In Table 3, for large and small company stocks, as the sampling method is
changed from using serial correlated returns to sampling i.i.d., the distributions
become much more leptokurtic (positive kurtosis). That is, this distribution has a
higher probability than a normally distributed variable of values near the mean and a
higher probability than a normal distributed variable of extreme values. These
distributions also become more positively skewed. For example, the maximum
positive values for large and small company stocks increase from 25.8160 (2,582%)
to 145.1572 (14,516%) and 45.2324 (4,523%) to 2,031.8428 (203,184%) respec-
tively. The higher probability of extreme observations and the large increase in
magnitude of these extreme observations significantly increases the standard
deviations. For large company stocks the standard deviation increase from 5.8403
(584%) to 9.3353 (934%), while for small company stocks the standard deviation
increases from 9.7200 (972%) to 46.7183 (4,672%). These increases in standard
deviations are not accompanied by similar increases in returns therefore you see
significant decreases in the Sharp ratios.

Comparing the 20-year historical serial correlated (overlapping) returns to 20-year
simulated i.i.d. returns, the Sharpe ratios decline for large and small company stocks
from 1.3267 and 1.5625 to 0.8684 and 0.4771 respectively.8

For corporate bonds as the sampling method changes from the serial correlated
returns to sampling i.i.d., the distributions changes from platykurtic (negative
kurtosis) to leptokurtic. A platykurtic distribution has a smaller peak around the
mean and thin tails, which indicates a lower probability than a normal distribution of
values near the mean and extreme values. It also has a higher probability of mid-
range values. Furthermore, as the sampling method changes from the serial
correlated returns to sampling i.i.d., the increase in size of extreme values is not
near the magnitude of that found with the large and small company stocks. The
maximum positive value for corporate bonds increases from 8.8674 to 13.4426, a

8 The Sharpe ratios in this study are calculated using the differential return. Each trial’s n-period
compounded risk free rate is subtracted from the n-period compounded asset return. This array of
differences is used to calculate the average difference and standard deviation of differences (See: Sharpe
(1994)).

Table 2 5 year holding returns summary statistics (1926–2006)

Historical serial correlated returns
(overlapping data)

Simulated serial correlated returns
(overlapping data)

n=77 LCS SCS CB T-bills Simulation size 250 LCS SCS CB T-bills

Average Return 0.7358 1.1969 0.3626 0.2138 Average Return 0.7345 1.1905 0.3662 0.2009

Standard Deviation 0.6175 1.3420 0.3149 0.1776 Standard Deviation 0.6789 1.3708 0.3004 0.1677

Simulation Size 500,000

Average Return 0.7377 1.1981 0.3622 0.2137

Standard Deviation 0.6141 1.3347 0.3123 0.1763

LCS=Large Company Stocks, SCS=Small Company Stocks, CB=Corporate Bonds, and T-bills=
Treasury Bills
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52% increase. Compare that to a 462% increase for large stocks and a 4,392%
increase for small stocks. Thus for corporate bonds the mid-range values have a
much bigger impact on the standard deviation than they do for stocks. Given
their respective platykurtic and leptokurtic distributions, the historical 20-year
serial correlated distribution (overlapping) of corporate bonds has a higher
standard deviation than the simulated 20-year i.i.d. distribution. Since there is
not much different in the returns, the Sharpe ratio declines when 20-year
historical serial correlated (overlapping) returns are used instead of 20-year i.i.d.
sample.

4 Conclusion

This study demonstrates that simulation methods can induce bias in the Sharpe ratio
that lead to a misinterpretation of the results generated from portfolios of large
company stocks, small company stocks, and corporate bonds for holding periods of
one to 25 years.

There are two main issues related to this study. First, researchers need to
show that serial correlation is indeed present in any return series rather than a
by product of the simulation method. The second issue has to do with the need
for simulations, related to the auto-correlated returns, in the first place. When
sampling with replacement and conducting a large enough simulation all data
points in each n-period return distribution will be represented in the overall
simulation in approximately the same proportion as in the initial n-period
historical overlapping distribution. When calculating returns and standard
deviations and hence Sharpe ratios, the order of returns does not matter.
Therefore the simulated n-period mean returns and standard deviations will
approximately equal the historical overlapping n-period historical distribution
mean return and standard deviation. Therefore there is no need for the
simulations.

Results indicate that the use of auto-correlated n-period returns brings in the
tails of the distribution and significantly changes the higher order moments
(skewness, kurtosis) when compared to an n-period i.i.d. simulated distribution.
These distributional shifts effect the standard deviation and hence the Sharpe
ratio.
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